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Using physical arguments and partition theoretic methods, we demonstrate under
general conditions, that the eigenvalues w(m) of the grand canonical density
matrix decay rapidly with their index m, like w(m) ’ exp[−bB−1(ln m)1+1/a],
where B and a are positive constants, O(1), which may be computed from the
spectrum of the Hamiltonian. We compute values of B and a for several physical
models, and confirm our theoretical predictions with numerical experiments. Our
results have implications in a variety of questions, including the behaviour of
fluctuations in ensembles, and the convergence of numerical density matrix
renormalization group techniques.
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In this Note we are concerned with the eigenvalues of the operator
Ĉ=exp−b(Ĥ−mN̂). When Ĥ is the Hamiltonian, b=T−1 is the inverse
temperature (kb=1 for simplicity), m is the chemical potential and N is the
particle number, then this is the grand canonical density matrix operator,
and its eigenvalues represent the weights of the various quantum eigen-
states in the ensemble at inverse temperature b and potential m. The eigen-
values w(m) are easily determined as

w(m)=exp−b(Em−mNm) (1)



where Em and Nm are the energy and particle number of the mth eigenstate,
respectively.
The rate of decay of w(m) has recently generated considerable interest

in the renormalization group community. (1–3) In a typical quantum lattice
renormalization group study, the lattice is divided into a system and envi-
ronment. One then tries to coarse-grain the system; one can do this by
truncating the many-body state-space of the system to include only the
important quantum states. Away from criticality, we may regard the envi-
ronment as a heat bath, and consequently the system is well described by a
grand canonical density matrix. If we choose to retain the first M states of
the density matrix to describe the system, a measure of the truncation
(coarse-graining) error is given by the weights of the states one has thrown
away, i.e., 1−;M

m w(m). The dependence of this quantity on M is in turn
determined by the rate of decay of w(m).
While it is clear from Eq. (1) that w decays exponentially as a function

of E, a little thought shows that there can be a large number of (near)
degeneracies g(w) for any given value of w, which may alter the exponen-
tial decay. Thus, determining the distribution w(m) first requires determin-
ing the degeneracy function g(w). Partial results in this direction have
previously been obtained for the Ising model by Okunishi, Hieida, and
Akutsu (1) who used the theory of partitions to calculate the asymptotic
behaviour of w(m). However, their method directly utilised the special
structure of the grand-canonical density matrix found in integrable models,
such as the 1-D Ising model. They further suggest that the asymptotic form
derived from the Ising model may hold universally. As we shall see, this is
not quite the case, and here we generalise their approach to derive the
correct form of w(m) for more general classes of Hamiltonians, that
encompass many physical models.
As in ref. 1, we shall rely on the theory of partitions. We present a

simple generalization of the Meinardus theorem (4) from partition theory,
that describes the asymptotic behaviour of the number of partitions.
Although we shall only apply this result to the problem of the density
matrix eigenvalues posed above, we mention in passing that many other
physical problems, such as the determination of level densities in nuclei, (5)

or the masses of states in string theory, (6) also admit direct partition
theoretic interpretations, and our results may also be of relevance there.
We begin, however, with an ‘‘order-of-magnitude’’ estimate of the

degeneracy g(w), which illustrates in a simple way the physical ideas. Our
argument is adapted from a calculation by Bethe of the degeneracy of
nuclear energy levels. (7)We assume, for now, a Hamiltonian of independent
particle form, i.e., Ĥ=;N

i ĥi. States with equal weights w(m)=w have
equal values of Em−mNm. Then, if most of the states with weight w also

290 Chan et al.



have the same particle number, then they must have the same energy, and
the corresponding degeneracy g is related to the entropy, through

g=exp S(E). (2)

However, we also know that the particle number distribution is strongly
peaked around its equilibrium value N0, and thus for small T, and small
excitations above the ground (equilibrium ensemble) energy E0, most
excited states will have a particle number ’N0. Thus, in this simplifying
case, our problem of determining g(w) reduces to a calculation of the
entropy. For small fluctuations we have

dS=b(dE−mdN). (3)

Let us assume for simplicity that the system starts at a temperature 0, and
we raise the temperature by b−1. Then, the Fermi distribution function
changes over a range O(b−1) around the Fermi level m=EHOMO− E0, where
the density of one-particle states is O(N/m). Thus the number of excited
particles is ne=O(N/(mb)) (although the actual change in particle number
is dN=0, by our above assumption). The corresponding change in energy
is

dE=O(b−1ne)=O(N/(mb2)). (4)

Rearranging, yields b=O(N/mdE)1/2. Then substituting in Eq. (3), we find

dS=O(dE1/2(N/m)1/2). (5)

Since the entropy at T=0 is 0, S(T)=dS, we find approximately for the
degeneracy g

g(dE)=exp S ’ A exp(BdE)1/2, (6)

where A and B are constants dependent on Ĥ, and B3 (N/m), the density
of one-particle states.
The above calculation, although crude and valid only in the regime of

small fluctuations dE above the ground state, already provides an estimate
of the growth of the eigenvalue degeneracy g, with increasing energy. The
result is readily understood: fluctuations of O(dE) are shared out across
O((BdE)1/2) single particle levels; the different combinations of these lead
to the exponential dependence. Furthermore, we see that the constant in
the exponential dependence is proportional to the density of one-particle
states.
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We should like to obtain a sharper estimate though, and this may be
done through the partition theoretic approach. We recall that the number
of partitions of an integer n, g(n), is the number of ways that such an
integer may be formed by summing positive integers less than or equal to n.
If there are no further restrictions (for example, each integer may be
repeated as many times in the sum as one likes), then g(n) is associated
with the following generating function,

G(q)=C
.

n=1
g(n) qn=D

.

n=1
(1−qn)−1, (7)

as seen by expanding in powers of qn. Generalisations are easily con-
structed. For example, if some integers are to be omitted in the partition
sum, the number of partitions g(n) is associated with the generating func-
tion

G(q)=C
.

n=1
g(n) qn=D

.

n=1
(1−qn)−an (8)

where an=0 if n is excluded, and 1 otherwise. One can obtain g(n) from
G(q) by contour integration, using the Cauchy integral theorem, i.e.,

g(n)=
1
n!
dn

dqn
G(q)=

1
2pi

G
G(q)
qn+1

dq. (9)

Remarkably, the evaluation of the above integral for certain cases of the
generating function Eq. (8) may be accomplished exactly, and the history
of this achievement and the mathematicians associated with it is described
in ref. 8. Thus, g(n) is a fairly well understood function.
In ref. 1, Okunishi et al. showed that the trace of Ĉ (i.e., the partition

function) in the Ising model is precisely of the form Eq. (8), with an=0 for
n even. In such a case, g(n) is known exactly, (8, 9) and thus the eigenvalue
distribution of the density matrix is also known exactly.
We are concerned, however, with more general Hamiltonians. Res-

tricting ourselves to single particle models, let us write fi=Ei−m, where Ei
is the ith eigenvalue of ĥ. Then, we have

wm=exp−b C
N

j
fj=exp−bFm. (10)

We see that the degeneracies g(w) correspond to the number of ways of
forming w by summing up the eigenvalues fi, where each fi may only
appear once (to preserve Fermi statistics). This is a generalisation of the
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partition theory problem described previously, in three respects. Firstly,
our eigenvalues fi are not in general integers, secondly, there may be a
bound spectrum where fi takes negative values, and finally we have the
restriction that each fi may only appear once in any partition (i.e., all
summands are distinct). It is not hard to see (described, e.g., in refs. 10, 6,
and 11), that the generalization from an integer to a more general spectrum
involves replacing the term qm by qFm; furthermore restricting partitions to
distinct summands is a well known problem in partition theory (see for
example, ref. 8, Chap. 1), which introduces a sign change in Eq. (8), and
thus the requisite generating function is

G(q)= C
.

m=1
g(Fm) qFm=D

.

m=1
(1+qfm). (11)

Because of the general spectrum Fm, one cannot perform the integra-
tion in Eq. (9) exactly. However, asymptotic results applicable to Eq. (8),
may be also established for our function Eq. (11). In particular, a result
known as the Meinardus theorem (4, 8) (used for example, in refs. 1 and 10)
yields a detailed estimate of the asymptotic g(n). It is necessary to modify
the theorem to encompass the three generalizations noted in the previous
paragraph, but given some familiarity with the original derivation (see
ref. 8, Chap. 6 for a particularly lucid exposition), the necessary corrections
are not difficult to compute, and thus we state without further proof our
generalised result below, valid as FQ.,

g(F) ’ [AFk exp(BF)a/(a+1)](1+O(F−k
−

)) (12)

where a is the real part of the rightmost (simple) pole associated with the so-
called spectral zeta function z(s)

z(s)= C
.

m=1
f−sm |+ (13)

and |+ denotes a restriction of the above sum to positive fm. We are inter-
ested most in the exponential form of the growth of g(F), but for comple-
teness, the constants are

A=2z(0)+n−[2p(a+1)[RC(a+1) g(a+1)]
1
a+1]−1/2 (14)

B=(1+1/a)1+1/a [RC(a+1) g(a+1)]1/a (15)

k=(−1−a/2)/(1+a) (16)
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where n− is the number of negative fm in the spectrum, R is the residue of
z(a), and k − is a small number. g(s) is the function g(s)=;.

n=1 (−)
n+1 n−s.

The above generalization differs from the original Meinardus theorem
through a slightly different dependence on a and R, the presence of a dif-
ferent z function, and by the factor of 2z(0)+n− . These and other general
features of the result are now discussed.
We see that the exponential growth of g(F) is controlled by the posi-

tion a and residue R of the rightmost (simple) pole of z(s). Looking back
to our approximate analysis earlier, Eq. (6), we see that R is a measure of
the one-particle level density, and a is a measure of its power law growth,
i.e., asymptotically the eigenvalue spectrum including the effect of degener-
acies is like fm ’ Rm1/a. The z function succinctly contains all the model-
specific information about the eigenvalue spectrum of the operator ĥ−m,
and its rightmost pole describes the asymptotic behaviour of the eigen-
values. In general, the rightmost pole will lie on the positive real axis, and
thus the exponent of growth in Eq. (12), a/(a+1) < 1. The determination
of the exact asymptotic behaviour for a given problem, and any given
Hamiltonian, thus reduces to the determination of a for the spectrum of f̂.
Since the value of a is necessarily model dependent (and varies, as we shall
see, with dimensionality), it is then clear that the assertion in ref. 1, that the
asymptotics of the Ising model carry over to other systems, cannot in
general be true.
We note that the exponential growth of g(F) is insensitive to the

negative eigenvalue spectrum; in particular the z function is a sum
restricted to only positive eigenvalues fm. This is because for asymptotically
large F, all the negative fm are effectively 0 on the scale of F, and the states
may be chosen to be occupied or unoccupied without affecting F. Thus the
contribution of the negative spectrum is simply the degeneracy factor 2n− ,
that appears in A, Eq. (14). However, in the intermediate regime, the nega-
tive eigenvalues may lead to substantial deviations from the asymptotic
form. Denoting the sum of all the negative eigenvalues fm by Fmin, then
g(F)=;Fmin

F − < 0 g+(F+|F
−|) g−(F −), where the subscripts denote partitions

into positive or negative eigenvalue summands only. Then, since g−(F −) is
peaked at some value |F̄|=o |Fmin |, and ;F − g−(F −)=2n− , we may estimate
simply by expanding the argument of the exponential,

g(F) ’ g+(F)[1+O(ec |F̄|
d
dF F

a/(a+1)
)]

’ o(ec |Fmin |/F
1/(a+1)
) 2n−g+(F) (17)

Thus for F1/(a+1) < |Fmin |, the negative eigenvalues introduce a factor
2n− exp c |Fmin |/F1/2 into g(F).
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We now illustrate our result for g(F) with some explicit computations
for model problems.

(i) The d-Dimensional Harmonic Oscillator: Consider a d-dimensional
harmonic oscillator with equal fundamental frequencies in all directions, w.
The eigenvalues are then

Em=w 1C
d

a
ma+

d
2
2 , ma=0, 1, 2,... . (18)

The corresponding z(s) is the Barnes z function, (12, 11) which has poles at
s=d, d−1,..., 1. The residues are complicated functions of Bernoulli
polynomials, (11) and we note only that they are proportional to w−d. The
chemical potential m does not affect the poles of z(s), and thus the rate of
growth of g(F) ’ AF (−1−d/2)/(1+d) exp(BF)d/(d+1). Furthermore, in any
dimension, B is proportional to w−1, which is just the one-particle eigen-
value density, as we deduced in Eq. (6).
In the case of a one-dimensional oscillator, the above expression

reduces to g(F) ’ AF3/4 exp(BF)1/2. This problem is essentially isomorphic
to the Ising model studied by Okunishi et al., (1) and in agreement with our
previous approximate result, Eq. (6). We see here the important role of
dimensionality: in all dimensions, the actual one-particle eigenvalues take
the same values, but because of the different degeneracies, one obtains dif-
ferent decays.

(ii) Hamiltonians on a Compact Manifold: When we restrict the
Hamiltonian to act on a compact manifold, such as in a box, or the surface
of a sphere, then we may use a result from the theory of elliptic differential
operators, which states the poles of the corresponding z(s) are at (see for
example refs. 13, 10, and 11) s=(d−n)/2, n=0, 1, 2,..., where d is the
spatial dimension, with no pole at s=0. (Note that this theorem does not
apply to the harmonic oscillator example above, since there we do not have
a compact manifold). Furthermore, the residue of the rightmost pole
depends only on the order of the differential operator (which for most
Hamiltonians is 2), the spatial dimension, and the total spatial volume. (6, 14)

Thus, under the condition of compactness, the constants a and B are uni-
versal constants, and to leading order the asymptotic behaviour of the
eigenvalue spectrum, as characterised by the function of g(F), is indepen-
dent of the detailed form of the Hamiltonian. For the relevant physical
spatial dimensions, d=1, 2, 3, we obtain the asymptotic forms g(F) ’
F−5/6 exp(BF)1/3, F−3/4 exp(BF)1/2, F−7/10 exp(BF)3/5, respectively.
As an example of the above type of operator, consider a particle on a

d-dimensional ring (of equal radii in all dimensions, for simplicity). This
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has the Hamiltonian Ĥ=−D/2, and corresponding eigenvalues ; a=1, d m
2
a,

|m|=0, 1,... (in suitable units); with a chemical potential, this becomes
; a=1, d m

2
a−m. The corresponding z function (excluding the zeroth eigen-

value)

z(s)= C
.

ma=−.

1 C
a=1, d

m2a−m2
−s

(19)

is known as a generalised Epstein z function. (15, 11) This has a single first-
order pole at d/2, with residue R=pd/2/C(d/2). This allows B to be easily
calculated. For example, for d=2, we find

g(F) ’ AF−3/4 exp[2(p3/6)1/2 F1/2]. (20)

The generality of these results may seem surprising, but it is a result of
the restriction to a compact manifold. Roughly speaking, for sufficiently
high eigenvalues, the spectrum of a Hamiltonian in a compact manifold
begins to look like the spectrum of the Laplacian, and thus we may obtain
these universal results. These results, of course, are asymptotic, and valid in
the regime where |E|± |V|, where |V| is the maximum of the potential on
the manifold. In the intermediate regime where |E| ’ |V|, then other behav-
iour can be expected. For example, if the potential is locally quadratic, we
expect the degeneracies to follow our above analysis for the harmonic
oscillator.

(iii) Coulombic Hamiltonians: Many physical systems of interest, for
example that of non-interacting electrons in the field of several nuclei, are
described by Coulombic Hamiltonians. The exact treatment of such
systems is not easy, and we do not have any such results to report here.
Nonetheless, we can attempt to deduce some simple features of g(F). The
spectrum of the Hamiltonian divides into a bound and continuum region;
for energies approaching 0 from below, the eigenvalues look like −Y/n2,
with degeneracy 2n+1 (in 3 dimensions).
There are two new features which must thus be handled: the infinite

degeneracy of the eigenvalues at En=0 (fn=−m, if we include the chemical
potential), and the continuum nature of the positive eigenvalues. While
there are techniques for handling continuum zeta functions (see for
example, ref. 16), we will circumvent both these problems, since in many
physical applications which concern us (for example, those that involve
basis set expansion), the system of interest is studied between a minimum
and maximum spatial resolution lmin=1/omax, lmax=1/omin. Under these
conditions, the positive eigenvalues are like (nomin)2, which resembles those
of a particle on a ring. Furthermore, there are only a finite number of
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bound eigenvalues. In the asymptotic regime with |E|± |Y|, because of the
maximum spatial resolution, the analysis for compact manifolds (see
above) is directly applicable, and g(F) has the form shown above. As pre-
viously discussed, the bound eigenvalues lead to a degeneracy factor 2n−
that appears in A. Thus in 3 dimensions, we argue that the behaviour of
g(Fm) is as described above, viz,

g(F) ’ AF−7/10 exp(BF)3/5, (21)

The above remarks are easily adapted to any Hamiltonian with a finite
number of bound eigenvalues, and a spectrum which goes like nb, b > 0.
(iv) Interacting Systems: Here, again, an exact analysis is very diffi-

cult. However, many such physical systems, even those with strong
interactions, may be transformed into systems of weakly interacting pseudo-
particles. For our purposes, it is sufficient to consider these as simply par-
ticles with a fuzzy eigenvalue spectrum, i.e., the ith energy level is Ei+dE,
where dE is a measure of the strength of interactions between pseudo-par-
ticles. Then, the results we have derived for our simple models are approx-
imately transferable to the case of the interacting systems, where the z(s)
function is expressed in terms of the pseudo-particle energies. (If the
pseudo-particles no longer obey Fermi statistics, some modifications to the
Meinardus theorem must be made, but the general features are similar).
Our results for g(F), now allow us to obtain the eigenvalue distribu-

tion w(m). It is clear that m(F)=>FFmin g(F
−) dF −. Since we only have an

asymptotic result on g(w), the integral can only be determined approxi-
mately, and we obtain

m(F)=O(Fk+1 exp(BF)a/(a+1)). (22)

Thus, w(m) may be obtained by rearranging, (remembering bF=−ln w),
which yields

w(m)=O(exp[−bB−1(ln m)1+1/a]). (23)

This is our final result for the distribution of the eigenvalues of the density
matrix, in terms of the constants A and B discussed above.
Since parts of our analysis above have been heuristic in nature, it is

worthwhile to perform some numerical tests. Although our results for
w(m) are considerably cruder than those for g(F), they are in the most
convenient form for testing, and allow us to check the most important
prediction, namely the power of the exponential growth.
Below we plot ln(ln w(m)) against ln(ln m)) for the harmonic oscilla-

tor in 1 (lines i, ii), 2 (line iii) and 3 dimensions (line iv), and for the particle
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ii. 1D H.O,  µ=6
iii. 2D H.O,  µ=0
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v. 1D Ring,  µ=0

Fig. 1. Plots of ln(ln w) against ln(ln m), for various models.

on the ring in 1 dimension (line v). From the above result, the gradients of
the lines are determined from the poles of z(s), as 1+1/a. Theoretically,
we thus predict gradients (in the order above) of 2, 3/2, 4/3, 3, which
agrees well with numerical fits to the data shown, which give 1.92, 1.26,
1.19, and 2.98. Note also how the line for the harmonic oscillator with
m=6 lies below that with m=0, demonstrating the influence of negative
eigenvalues, as described by Eq. (17).
We finish with a few comments on the utility and meaning of the

results obtained. We were motivated to consider this question because of its
relevance to the numerical renormalization group studies. A detailed dis-
cussion of the convergence of such algorithms is not appropriate here, but
as argued in our opening paragraphs, the rapid decay of the eigenvalues
indicates that the accuracy of such calculations should increase very rapidly
as we keep more and more quantum states in the coarse-graining proce-
dure. This has been suggested by previous authors. (17, 2, 3) Indeed, recent
detailed numerical studies (2, 3) have demonstrated a rate of convergence in
line with the theoretical prediction Eq. (23).
Finally, we mention that these results are also relevant in the more

general context of fluctuations in the grand canonical ensemble. We have
demonstrated that the eigenvalues of the grand canonical density matrix
decay very quickly with the state index, faster than any polynomial. Thus,
for any physical operator P̂ whose expectation value OPP changes reason-
ably slowly with the state index m, the probability distribution of OPP in
the grand canonical ensemble is highly peaked. For example, taking
P̂=Ĥ, N, we see that almost all the states have the same energy and par-
ticle number, which demonstrates the well-known equivalence between the
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grand-canonical and micro-canonical ensembles. (18) Note that the require-
ment that OPP changes reasonable slowly is analogous to the requirement
that the compressibility be finite, for density fluctuations in the grand
canonical ensemble to be small.
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